46,004 research outputs found

    B\"acklund-Darboux Transformations and Discretizations of Super KdV Equation

    Full text link
    For a generalized super KdV equation, three Darboux transformations and the corresponding B\"acklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the B\"acklund-Darboux transformations and the corresponding discrete system are considered for Kupershmidt's super KdV equation. When all the odd variables vanish, a nonlinear superposition formula is obtained for Levi's B\"acklund transformation for the KdV equation

    Achieving Secrecy Capacity of the Gaussian Wiretap Channel with Polar Lattices

    Full text link
    In this work, an explicit wiretap coding scheme based on polar lattices is proposed to achieve the secrecy capacity of the additive white Gaussian noise (AWGN) wiretap channel. Firstly, polar lattices are used to construct secrecy-good lattices for the mod-Λs\Lambda_s Gaussian wiretap channel. Then we propose an explicit shaping scheme to remove this mod-Λs\Lambda_s front end and extend polar lattices to the genuine Gaussian wiretap channel. The shaping technique is based on the lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously. As a result, the encoding complexity for the sender and the decoding complexity for the legitimate receiver are both O(N logN log(logN)). The proposed scheme is proven to be semantically secure.Comment: Submitted to IEEE Trans. Information Theory, revised. This is the authors' own version of the pape

    Construction of Capacity-Achieving Lattice Codes: Polar Lattices

    Full text link
    In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the multilevel approach of Forney \textit{et al.}, where we construct a capacity-achieving polar code on each level. The component polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We prove that polar lattices are \emph{AWGN-good}. Furthermore, using the technique of source polarization, we propose discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are explicit, and the overall complexity of encoding and decoding is O(NlogN)O(N\log N) for any fixed target error probability.Comment: full version of the paper to appear in IEEE Trans. Communication

    Supersymmetric KdV equation: Darboux transformation and discrete systems

    Full text link
    For the supersymmetric KdV equation, a proper Darboux transformation is presented. This Darboux transformation leads to the B\"{a}cklund transformation found early by Liu and Xie \cite{liu2}. The Darboux transformation and the related B\"{a}cklund transformation are used to construct integrable super differential-difference and difference-difference systems. The continuum limits of these discrete systems and of their Lax pairs are also considered.Comment: 13pages, submitted to Journal of Physics

    Efficient Integer Coefficient Search for Compute-and-Forward

    Full text link
    Integer coefficient selection is an important decoding step in the implementation of compute-and-forward (C-F) relaying scheme. Choosing the optimal integer coefficients in C-F has been shown to be a shortest vector problem (SVP) which is known to be NP hard in its general form. Exhaustive search of the integer coefficients is only feasible in complexity for small number of users while approximation algorithms such as Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm only find a vector within an exponential factor of the shortest vector. An optimal deterministic algorithm was proposed for C-F by Sahraei and Gastpar specifically for the real valued channel case. In this paper, we adapt their idea to the complex valued channel and propose an efficient search algorithm to find the optimal integer coefficient vectors over the ring of Gaussian integers and the ring of Eisenstein integers. A second algorithm is then proposed that generalises our search algorithm to the Integer-Forcing MIMO C-F receiver. Performance and efficiency of the proposed algorithms are evaluated through simulations and theoretical analysis.Comment: IEEE Transactions on Wireless Communications, to appear.12 pages, 8 figure
    corecore